

Track 1A: Oil & Gas Production and Utilization—Overview

George Guthrie

Office of Research and Development National Energy Technology Laboratory

The Need:

Energy portfolio is projected to remain anchored by fossil.

AEO2012: U.S. crude oil production increases; U.S. net imports fall (in reference case)

AEO2012: Shale gas provides largest source of growth in U.S. natural gas supply; U.S. become a net exporter

Unconventional U.S. Fossil Resources

- shale gas and other tight gas
- tight oil
- ultradeepwater hydrocarbons
- next generation CO₂-EOR; residual oil zone
- next generation enhanced gas recovery
- heavy oil; tar sands
- oil shale
- methane hydrate

Common Technical Challenges

- Efficient engineering of the subsurface
 - Result: fewer wells; lower impact
 - Key technical issues: predictable fracture propagation; lower usage of potable water; efficient drilling; improved recovery—improved reservoir modeling; improved monitoring; improved mobility control (CO₂)
- Effective isolation of reservoir
 - Result: confidence in environmental stewardship
 - Key technical issues: wellbore integrity; predictable fracture propagation; high-resolution subsurface imaging
- Environmental monitoring

TL-RUA

- Result: confidence in environmental stewardship
- Key technical issues: abandoned wellbores; limited publically available data; protection of groundwater and air quality; interpretation of complex background signals—need for baseline data; methods to fingerprint signals

Four Decades of Shale-Gas R&D

Generating the information necessary to unlock the "next" key domestic natural gas resources by characterization, technology development, & environmental monitoring.

R&D in the '70s-'90s provided the **technology base** to unlock new gas resources:

- Advanced drilling & completion (e.g., directional drilling, fracturing, stimulation)
- Resource potential and key properties

R&D in the early 2000's developed environmental technology & refined assessments for:

- Shale gas
- Tight gas
- Coal-bed methane

Current R&D is ensuring *environmentally* sustainable development of domestic natural gas resources through:

U.S. dry gas production (trillion cubic feet per year)

DOE core competency in Engineered–Natural Systems stems from investments for containment and protection of the environment.

- science-based prediction of system performance
 - > engineered-natural system
- prediction of fluid flow in porous & fractured media
 - > gas flow; fluid flow
 - > geomechanical response
 - > contaminant transport
- geomaterials properties
 - behavior in extreme conditions (experiments/theory)
 - > geomechanics
- wellbores
 - > drilling technologies
 - stemming for containment under extreme conditions (wellbore completion)
- monitoring and diagnostics
 - > geophysics (seismic) & advanced imaging
 - > atmosphere signals

DOE core competency in Engineered–Natural Systems has been honed through leveraging with several energy and environment initiatives.

N=TL-RUA

NETL-RUA Portfolio in Geological/Environmental Sciences

Science/engineering research of natural systems to enable the clean production & utilization of fossil energy

Core Capabilities:

- Multiscale Assessments
- Multiphase Fluid Flow
- Geomaterials Science
- Strategic Monitoring of Natural System Behavior
- Geospatial Data Management & Assessment

Although much of research portfolio is early-stage, ...

DOE programs in unconventional gas established the science/technology foundations for surprising growth in domestic unconventional resource

NETL-RUA applied-basic research portfolio includes technologies with near-term application

TN 100 m

Anthropogenic Tracers

Advanced Reservoir Simulation

Monitoring Technologies

Materials Research, Design, Development

Drilling

- Monitoring of Natural Systems (Alexandra Hakala)
- Wellbores & Drilling (Brian Strazisar)
- Advanced Simulation Tools for Reservoir Performance (Grant Bromhal)
- Partnering for Innovation:
 Shale Energy Resources Alliance (George Darakos)

- technology development
- joint research
- partnering for data collection

- Monitoring of Natural Systems (Alexandra Hakala)
- Wellbores & Drilling (Brian Strazisar)
- Advanced Simulation Tools for Reservoir Performance (Grant Bromhal)
- Partnering for Innovation:

 Shale Energy Resources Alliance –
 (George Darakos)

- abandoned wellbores
- geochemical tracers
- geophysical imaging (reservoirs, fractures)
- baseline data

- Monitoring of Natural Systems (Alexandra Hakala)
- Wellbores & Drilling (Brian Strazisar)
- Advanced Simulation Tools for Reservoir Performance (Grant Bromhal)
- Partnering for Innovation:

 Shale Energy Resources Alliance –
 (George Darakos)

- wellbore integrity
- zonal isolation
- cement properties in situ
- long-term cement integrity
- drilling dynamics and efficiency

- Monitoring of Natural Systems (Alexandra Hakala)
- Wellbores & Drilling (Brian Strazisar)
- Advanced Simulation Tools for Reservoir Performance (Grant Bromhal)
- Partnering for Innovation:

 Shale Energy Resources Alliance –
 (George Darakos)

- fluid flow on fractures
- fracture propagation
- model validation/calibration
- efficient reduced-order models for UQ
- risk assessment
- data portal

- Monitoring of Natural Systems (Alexandra Hakala)
- Wellbores & Drilling (Brian Strazisar)
- Advanced Simulation Tools for Reservoir Performance (Grant Bromhal)
- Partnering for Innovation:
 Shale Energy Resources Alliance (George Darakos)

- air quality
- stray gas & wellbore integrity
- water resources & waste mitigation

Posters Related to Track 1A

Air Monitoring—Mike McCawley (WVU)

Reservoir Structure Visualization and Fracture Characterization— Dengliang Gao (WVU)

Foam Cement Stability—Barbara Kutchko (NETL)

Cement Fracture Flow—Julie Vandenbossche (Pitt)

Reservoir Fluid Behavior in Deep Formations: Equations of State— Athanasios Karamalidis (CMU)

Reactive Transport Modeling for Cement Property Alteration— Leopold Brunet (PSU)

Fracture Flow—Dustin Crandall (URS)

Geomechanics Related to Shale Gas and/or CO₂—Hema Siriwardane (WVU)

Surrogate Models (based on Artificial Intelligence)— Amirmasoud Kalantari (WVU)

CO₂ Storage Potential & Enhanced Natural Gas Recover in Depleted Shale—Bob Dilmore (NETL)

Track 3A (Industry Research & Development)

How government, universities, and industry can work to together to address upstream R&D needs.

- Chair: George Darakos, U.S. DOE/NETL
- Paul Ziemkiewicz, WV Water Research Inst.
- John Cramer, Nabors Well Services
- Josh Hickman, EdgeMarc Energy
- Richard Winschel, CONSOL Energy
- Rick Hammack, U.S. DOE/NETL

